Extra Practice Problems 6

Here's one final set of practice problems for the second midterm exam. We'll release solutions on Wednesday.

Problem One: Functions

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We'll say that f is linearly bounded if $f(n) \leq n$ for all $n \in \mathbb{N}$.
Prove that if $f: \mathbb{N} \rightarrow \mathbb{N}$ is linearly bounded and is a bijection, then $f(n)=n$ for all $n \in \mathbb{N}$. (Hint: You might find induction useful here.)

Problem Two: The Pigeonhole Principle

Suppose you have a sequence S of $r s+1$ distinct natural numbers. An increasing subsequence of S is subsequence of S whose values are in increasing order, and a decreasing subsequence of S is a subset of S whose values are in decreasing order. The Erdös-Szekeres theorem states the following: S must either have an increasing subsequence of length at least $r+1$ or a decreasing subsequence of length $s+1$.

Suppose that $S=\left\langle x_{1}, x_{2}, \ldots, x_{r s+1}\right\rangle$. Let's associate with each element x_{k} of this sequence a pair of natural numbers (I_{k}, D_{k}) with the following meaning:
I_{k} is the length of the longest increasing subsequence of S whose last element is at position k.
D_{k} is the length of the longest decreasing subsequence of S whose last element is at position k.
For example, consider the sequence $\langle 40,20,10,30,50\rangle$. Then

$$
\left(I_{1}, D_{1}\right)=(1,1) \quad\left(I_{2}, D_{2}\right)=(1,2) \quad\left(I_{3}, D_{3}\right)=(1,3) \quad\left(I_{4}, D_{4}\right)=(2,2) \quad\left(I_{5}, D_{5}\right)=(3,1)
$$

You might want to take a minute to check why these values are correct.
i. Let k be an arbitrary natural number where $1 \leq k \leq r s+1$. Prove that $I_{k} \geq 1$ and $D_{k} \geq 1$.
ii. Let j and k be arbitrary natural numbers where $1 \leq j \leq r s+1$ and $1 \leq k \leq r s+1$. Prove that if $j \neq k$, then $\left(I_{j}, D_{j}\right) \neq\left(I_{k}, D_{k}\right)$. To keep your proof short, we recommend assuming without loss of generality that $j<k$.
iii. Using your results from parts (i) and (ii), prove that any sequence of $r s+1$ distinct real numbers contains an ascending subsequence of length $r+1$ or a descending subsequence of length $s+1$. (Hint: Proceed by contradiction. If the sequence does not have an ascending subsequence of length $r+1$ or a decreasing subsequence of length $s+1$, what do you know about the values of all the (I, D) pairs?)

Problem Three: Binary Relations

This question explores the interaction between binary relations and tournaments.
Let's quickly refresh a definition. A tournament is a contest between some number of players in which each player plays each other player exactly once. We assume that no games end in a tie, so each game ends in a win for one of the players.

Here's a new definition to work with. If p is a player in tournament T,
 then we can define the set $W(p)=\{x \mid x$ is a player in T and p beat $x\}$. Intuitively, $W(p)$ is the set of all the players that player p beat. For example, in the tournament on the left, $W(B)=\{A, C, D\}$.
Now, let's define a new binary relation. Let T be a tournament. We'll say that $p_{1} \sqsubseteq_{T} p_{2}$ if $W\left(p_{1}\right) \subseteq W\left(p_{2}\right)$. Intuitively, $p_{1} \sqsubseteq_{T} p_{2}$ means that p_{2} beat every player that p_{1} beat, and possibly some additional players.
For example, in the tournament to the left, we have that $D \sqsubseteq_{T} C$, since $W(D)=\{A, E\}$ and $W(C)=\{A, D, E\}$. Similarly, we know $A \sqsubseteq_{T} D$ since $W(A)=\{E\}$ and $W(D)=\{A, E\}$.
Prove that if T is any tournament, then \sqsubseteq_{T} is a partial order over the players in T.

Problem Four: DFAs, NFAs, and Regular Expressions

Let $\Sigma=\{a, b\}$ and consider the following language over Σ :

$$
L=\left\{w \in \Sigma^{*} \mid \text { some letter in } w \text { appears at least four times }\right\}
$$

i. Design an NFA for L.
ii. Write a regular expression for L.

Problem Five: Nonregular Languages

Let $L=\left\{w \in\{0,1,2\}^{*} \mid w\right.$ contains the same number of copies of the substrings 01 and 10$\}$. This language is similar to the one in Problem Set Five, except that the alphabet is now $\{0,1,2\}$ instead of $\{0, l\}$. Prove that L is not a regular language.

Problem Six: Context-Free Grammars

Let $\Sigma=\{\wedge, \vee, \neg, \rightarrow, \leftrightarrow,(),, \top, \perp\}$ and let $\operatorname{TRUE}_{O}=\left\{w \in \Sigma^{*} \mid w\right.$ is a propositional formula containing no variables, and that formula is always true $\}$. For example $T \in T R U E_{0}, \perp \rightarrow T \in T R U E$, but $T \vee \perp \rightarrow \perp \notin T_{R U E}{ }_{0}$. Write a CFG for TRUE ${ }_{0}$.

