
CS103 Handout 23
Spring 2015 May 18, 2015

Extra Practice Problems 6

Here's one final set of practice problems for the second midterm exam. We'll release solutions on
Wednesday.

Problem One: Functions
Let f : ℕ → ℕ be a function. We'll say that f is linearly bounded if f(n) ≤ n for all n ∈ ℕ.

Prove that if f : ℕ → ℕ is linearly bounded and is a bijection, then f(n) = n for all n ∈ ℕ. (Hint: You
might find induction useful here.)

Problem Two: The Pigeonhole Principle
Suppose you have a sequence S of rs+1 distinct natural numbers. An increasing subsequence of S is
subsequence of S whose values are in increasing order, and a decreasing subsequence of S is a sub-
set of S whose values are in decreasing order. The Erdős–Szekeres theorem states the following:  S
must either have an increasing subsequence of length at least  r+1 or a decreasing subsequence of
length s+1.

Suppose that S = ⟨x1, x2, …, xrs+1 . Let's associate with each element ⟩ xk of this sequence a pair of
natural numbers (Ik, Dk) with the following meaning:

Ik is the length of the longest increasing subsequence of S whose last element is at position k.
Dk is the length of the longest decreasing subsequence of S whose last element is at position k.

For example, consider the sequence 40, 20, 10, 30, 50 .  Then⟨ ⟩

(I1, D1) = (1, 1)       (I2, D2) = (1, 2)       (I3, D3) = (1, 3)       (I4, D4) = (2, 2)       (I5, D5) = (3, 1)

You might want to take a minute to check why these values are correct.

i. Let k be an arbitrary natural number where 1 ≤ k ≤ rs + 1. Prove that Ik ≥ 1 and Dk ≥ 1.

ii. Let j and k be arbitrary natural numbers where 1 ≤ j ≤ rs + 1 and 1 ≤ k ≤ rs + 1.  Prove that
if j ≠ k, then (Ij, Dj) ≠ (Ik, Dk). To keep your proof short, we recommend assuming without
loss of generality that j < k.

iii. Using your results from parts (i) and (ii), prove that any sequence of rs + 1 distinct real num-
bers contains an ascending subsequence of length  r + 1 or a descending subsequence of
length s + 1. (Hint: Proceed by contradiction. If the sequence does not have an ascending sub-
sequence of length r + 1 or a decreasing subsequence of length s + 1, what do you know
about the values of all the (I, D) pairs?)
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Problem Three: Binary Relations
This question explores the interaction between binary relations and tournaments.

Let's quickly refresh a definition. A  tournament is a contest between some number of players in
which each player plays each other player exactly once. We assume that no games end in a tie, so
each game ends in a win for one of the players. 

Here's a new definition to work with. If p is a player in tournament T,
then we can define the set W(p) = { x | x is a player in T and p beat x }.
Intuitively, W(p) is the set of all the players that player p beat. For ex-
ample, in the tournament on the left, W(B) = {A, C, D}.

Now, let's define a new binary relation. Let T be a tournament. We'll say
that p₁ ⊑T p₂ if  W(p₁) ⊆ W(p₂). Intuitively,  p₁ ⊑T p₂ means that  p₂ beat
every player that p₁ beat, and possibly some additional players.

For example, in the tournament to the left, we have that D ⊑T C, since
W(D) = {A,  E} and  W(C) = {A,  D, E}. Similarly, we know  A ⊑T D

since W(A) = {E} and W(D) = {A, E}.

Prove that if T is any tournament, then ⊑T is a partial order over the players in T.

Problem Four: DFAs, NFAs, and Regular Expressions
Let Σ = {a, b} and consider the following language over Σ:

L = { w ∈ Σ* | some letter in w appears at least four times }

i. Design an NFA for L.

ii. Write a regular expression for L.

Problem Five: Nonregular Languages
Let L = { w ∈ {0, 1, 2}* | w contains the same number of copies of the substrings 01 and 10 }. This
language is similar to the one in Problem Set Five, except that the alphabet is now {0, 1, 2} instead
of {0, 1}. Prove that L is not a regular language.

Problem Six: Context-Free Grammars
Let Σ = { ∧, ∨, ¬, →, ↔, (, ), ⊤, ⊥ } and let TRUE₀ = { w ∈ Σ* | w is a propositional formula con-
taining no variables, and that formula is always true }. For example ⊤ ∈ TRUE0, ⊥ → ⊤ ∈ TRUE0,
but ⊤ ∨ ⊥ → ⊥ ∉ TRUE0. Write a CFG for TRUE₀.
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